

Eco-Friendly Approaches to Managing Plant Diseases

Monika Meena¹, Manisha Meena²

¹Ph.D. Research Scholar, Department of Plant Pathology, Sri Karan Narendra Agriculture University Jobner, Jaipur, Rajasthan.

²Ph.D. Research Scholar, Department of Agriculture Chemistry and Soil Science, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan.

Abstract

Conventional plant diseases control has primarily involved the use of chemical pesticides, and this has been known to have numerous adverse effects on the environment, human health, and the economy. As a consequence of these worries, modern agriculture has increasingly adopted environment friendly strategies in disease control. This paper discusses various integrated and eco-friendly approaches in controlling plant diseases that have shown reasonable efficiency as a measure to decrease on the use of chemical control methods. Beneficial fungi, bacteria and nematodes, are among the crucial aspects of the so called 'organic or eco-friendly' disease control methods. These agents operate by conquering pathogens, synthesizing, going after, or consuming hazardous microorganisms, a superior option to chemicals. Crop residues, composts, manures and bio fertilizers are organic in nature and improves the physical properties of the soil as well as support those friendly microscopic organism which has capacity to inhibit pathogens. These practices help in building up the desirable components of the soil physical structure, microbial activity and the plant diseases immunity which are the key fundamentals in building up a permanent and a sustainable disease resistance. Another important factor includes breeding of plants that have disease resistance or come with the gene modification. Resistant varieties can in a way, reduce the effects of certain diseases so that chemical control measures can be minimized. Cultural practices like rotation of crops, inter cropping and proper implementation of irrigation also help to avoid diseases by interference with the life cycle of the pathogens and the provision of unfavorable micro environmental for the survival of the pathogenic factors. Moreover, there are environment friendly chemicals and biopesticides include plant origin and microbial products in fighting diseases with fewer side effects on the environment. Last are the integrated disease management systems that are also multiple eco-friendly disease control method in one holistic

approach. In this article's final section, the author outlines the prospects for the development of environmentally friendly plant disease control measures by stressing the need for increased knowledge, research, and cooperation with farmers and policymakers from all over the world.

Introduction

The control of plant diseases holds an important place in agriculture; it reduces yield, food security, and the environment's condition. In the past, the management of plant diseases has continuously depended on chemical pesticides even though they provide quick results, their sustainability is questioned regarding their impacts to the environment, pollinators and humans. Use of synthetic chemicals causes emergence of pathogen resistant to the chemicals; unproductive soils; water and food chain pollution. These issues have therefore pointed out the need to consider organic methods of controlling plant diseases that are environmentally friendly, economically effectively and users friendly. Due to these challenges, sustainable or environmentally friendly methods of disease control have recently drawn lots of interest. These approaches focus on the prevention of plant diseases by the natural factors, microbial inoculants, and cultural management at the lowest effect on environment. The use of biological control processes include beneficial microorganisms and biocontrol products that reduce pathogens and pest through competition, predation or by producing anti microbial compounds. Likewise, ways of building up the soil based on the use of organic matter and methods of crop management as rotation, intercropping reduce conditions suitable for diseases to develop. The effectiveness of these tactics goes beyond what is seen at cutting pesticide utilisation rate, although that is a very significant factor. They also enhance botanical and agricultural diversity, increase the potential of topsoil caking, and develop endomorphic agriculture that is more durable in conditions of climate change and other related disturbances in the system. While farmers and other researchers consider these practices in producing environmentally friendly practices in the management of plant diseases, developing sustainable solutions can revolutionize the agricultural industry to become environmentally friendly and economically productive solutions. This paper looks at different green approaches and innovations for controlling plant diseases with a view of presenting the various methods that are used in sustainable agriculture.

Urgent HIV/AIDS Plant Disease Management

The world has relied much on chemical pesticides for the control of plant diseases, and this has caused more concern on their effects to the environment, economy and health. These chemicals have proved to give a short-term control of the pathogens Although their application has opened the following negative impacts; the pesticide-resistant pathogens develop, soil and water pollute, non-target organisms affect and there is a reduction of the bio-data. All these negative effects are however compounded by the growing problem of climate change which affects the trends in plant diseases an also destabilizes the pest volatility rates. So, aiming at preventing plant diseases, there is a suggestion to invent environmentally friendly means that would help manage the diseases without creating long-term negative effects on the environment and human health. Organic or IPM is the management of plant diseases using more of water and less chemical to minimize the impact of diseases. All those patented strive at working with nature, strengthening botanic and stimulating healthy soils – proven important in controlling diseases. For example, the release of biological control agents - microbial inoculants, o fungi or nematodes - it can quickly dominate pathogens by occupying similar niches, yielding inhibitory stuffs or directly preying on pests. Also, crop rotation, use of organic matter, proper watering also reduces diseases endangered on the soil as well as enhances the immunity of plants. This shift to more environmentally friendly approaches to plant disease management isn't simply a matter of the green political climate or green politics: it is an opportunity to develop a healthier and more sustainable agriculture. Through minimizing the application of toxic chemicals there will be less damage caused on the crops; and most importantly; use of eco-friendly methods that results in reduced costs to farmers in the long-run is ensured, increased use of sustainable farming technologies that support the bio-diversity and better living standards of animals and man. With the world's population growing and its overall need for food on the rise, sustainable measures against diseases have become more important than ever.

Biological Control Agents

Biological control agents (BCAs) are therefore natural organisms or products prepared from natural organisms used in managing plant diseases by suppressing offending pathogens. Such

agents can be bacteria, fungi, nematodes, viruses or other micro organisms that can control these undesirable pathogens by outcompeting for niches, parasitizing upon them, or synthesizing antimicrobial compounds. BCAs well have potential in replacing chemical pesticides since these organisms have natural mechanisms of controlling diseases while poses minimal harm to the environment. There is a high chance that through competition BCAs will be effecting its objectives since it is one of the main mechanisms. It is also good to understand that there are forces that suppress the pathogens for instance, there are goodness which fights the bad guys for space to feed on the soil or plants. For instance, Bacillus and Pseudomonas bacteria have been identified to temper with plant pathogens such as Fusarium and Pythium inhibiting their growth. Another type is Antibiosis, whereby the BCA releases chemicals, including antibiotic and enzymes that negatively affect the plant pathogens. For instance, Trichoderma species have some metabolites that inhibit a broad spectrum of fungal pathogens. Another is parasitic method whereby the BCAs locate and feed on the pathogens that attack plants. First, beneficial organisms such as predatory nematodes for instance Heterorhabditis and, Steinernema parasitize and destruct pest insects that transmitts plant diseases. Certain fungal BCAs like Arthrobotrys, parasites nematodes that feed on roots and the diseases which such nematodes cause. Several benefits accrue from the use of BCAs over the chemical treatments. They are selective, which is because they affect only the pathogenic microorganisms without having any impact on pollinators, or beneficial soil microorganisms. They also have lesser impact on people's health and the surroundings and can also assist diminish pesticide insusceptibility. But it significantly depends on such factors as the environment, the viruses' strains, and the procedure when using them. The new knowledge of biological control in the future will likely exhibit additional BCAs and better application methods to increase their impact to sustainable disease control.

Organic Amendments and Identification of Activities that Affect the Health of Soils

Organic inputs which include composting, manure, green manure, and biochar, act as the back bone for improving the quality of the soil and reducing plant diseases. These amendments are the natural which have enhanced the physical, chemical and even the biological quality of the soil in a manner that favours plant growth and resistance to diseases. With the addition of organic

material to the ground, farmers are able to develop healthier crops and minimal use of chemical chemicals. Another major advantage, with regard to the use of organic amendments is the changes introduced to the structure of the soil. The nature of organic matter enables the manipulation of the manner in which soils provide aeration, water, and drainage to plant root systems in relation to nutrient needs. They have reinforced healthier root systems that can further improve on disease pressures. It is good for the soil due to presence of many organisms that feed on it resulting to an increase in microbial population. Key points Healthy microbial population is crucial for the soil health because the beneficial microbes can suppress the pathogens from infecting the plants by out competing or producing anti microbial compounds. For instance, bacteria and fungi in the compost and manure groups have exhibited suppressiveness to some common soil pathogens like Rhizoctonia and Verticillium. Further, organic amendments ensure a steady nutrient feeding to the plants, which enhances a plant immune system thus preventing diseases. Healthy plants are less stressed and can therefore also be attacked by pathogen to a lesser extent than less healthy plants. Using compost as compared to inorganic materials it decomposes slowly and provide a balance nutrient cycling for the plants to have a constant source of the minerals they require. Other organic amendment that is helpful in improving the condition of the soil includes cover crops. They assist in discouraging soil erosion, in nitrogen fixation, and in disrupting disease cycles by upsetting the living conditions of soil borne diseases. There is also a possibility that the compounds from the roots of the cover crops may suppress the growth of pathogens, or capture beneficial microbes. Applying organic amendments within soil management systems also facilitates fertility management of soils apart from disease control since the health of crops improves due to the condition of the soil in which they are planted. In the overall framework of IDM strategy, organic amendments warrant versatile and effective approaches to the construction of ecological and sustainable agriculture systems.

Resistant Plant Varieties

The areas of ability and utilization of resistant plant varieties is one of the most efficient and sustainable ways of controlling plant diseases. These varieties have been developed with inherent ability to management certain pathogens naturally with minimum reliance on chemical control

measures for long term agricultural sustainability. Plant resistance to diseases can be categorized into two broad types: To this extent, the article discusses about the resistance genes and quantitative resistance. The genetically engineered plants are usually resistant by either denying the pathogen access into the plant, or by suppressing the growth of the pathogen and finally, by triggering self-healing responses in the plant. Most of these varieties are derived using the conventional breeding systems in which plants with inherent resistance are mated to produce plants with improved resistance to the diseases. In the past few decades, there has been improvement in the effectiveness of using genes to transfer resistance through genetic engineering and the recent technique of CRISPR -Cas9 gene editing for targeted genes against diseases. An easily recalled instance of disease-resistant crop is blight resistant potatoes. In the mid-1980s, the Irish potato was devastated by the late blight disease (Phytophthora infestans), but genetic modification has enabled for the development of potatoes with built-in resistance to the pathogen. In the same way, effective varieties of wheat with stem rust resistance have also been produced so assuring this sensitive crop to the destructive disease. Resistance can be genes which are specific to that type of resistance or genes which give broad resistance to a number of pathogens. He/She emphasized however, that it is a dynamic process whereby one or several pathogens associated with a host plant can mutate and in the process degrade the resistance. To address this, resistance breeding programs usually make use of stacking of multiple resistance genes and utilisations of pyramiding of multiple resistant genes. Labor saving due to the need of fewer pesticide applications also contribute ecological sustainability through, promoting polulation of beneficial insects and other organisms, the protection of beneficial soil organisms and the use of resistant plant varieties. Through developing the high resistant varieties, increased crop productivity, food security, and improved health of the environment will be observed.

Cultural Practices in Disease Control

Culture practices should always be incorporated into IPDM systems. Such practices entail changing techniques of crop husbandry that help to slow down development of diseases within plants, improve the health of crops and interfere with the life cycle of the pathogens. While chemical control methods might be effective in controlling the disease causing organisms,

cultural practices are environmentally friendly, cheap and rely on making conditions unfavourable for disease causing organisms while at the same time enhancing plant robustness. With regard to disease control understand cultural practices, the major one is Crop Rotation. It is possible to disrupt the pathogen life cycle and, as a consequence, reduce plant diseases by changing the type of plants planted in a field in different growing seasons; the majority of pathogens affect only one species or family of plants. This tends to minimize the concentration of soil borne diseases and pests which are crop specific. Specifically, the cereal crop – legume rotation is among the best practices because it reduces the spread of root rot diseases due to fungal pathogens such as Fusarium. The other key issue touched on is spacing and plant population. Proper spacing also facilitates airflow around the plants in minimizing humidity that favor many fungal and bacterial diseases. Plants grown in close proximity have high humidity, a condition suitable for growth of diseases such as powdery mildew, blight and rusts. Apart from allowing for healthier plants growth it also prevents the spread of pathogens from one plant to another. Sanitation is also an important aspect in disease control since it act as a major determinants towards the disease status of a given community. This saves the plant from the accumulation of diseases that linger in the residues of plants or soil, for instance downy mildew and bacterial wilt. Another cultural practice includes Water management. The action of too much water or little soil air causes waterlogged soils that favor the growth of root rot diseases and other water-borne illnesses. Irrigation practices like the drip system mean that there is little water on the surface of the plants or the soil and therefore fewer opportunities if soil borne diseases. These cultural practices can therefore be embraced by farmers for long term control of plant diseases; hence, leading to sustainable agricultural systems since diseases control will be achieved without reliance on chemical control measures.

Eco-friendly chemical

Biopesticides also known as natural plant protectants are environmentally friendly chemical solutions in the eradication of plant diseases without the vices that come with synthetic chemical control methods. These alternatives are sourced biologically from plants, minerals, microorganisms and they are safer and more sustainable for use in controlling the pathogens

without harming the long term health of the environment, human and other organisms not infected. Biological pesticides are one of the best recognized categories of bio-friendly chemical substitutes. Among these are products that have been prepared from living organisms such as bacteria, fungi or virus which deliver an accurate and precise control of plant pathogens. For example, Bacillus thuringiensis (Bt) is a bacterium which contains proteins toxic to specific insect larvae while Trichoderma species are fungi biocontrol agents that hinder soil borne diseases out competing the pathogen and creating toxins inhibiting pathogen growth. Another hopes in future the addressing of biological pesticide is viral biopesticides for example the Cydia pomonella granulosis virus which affects specific insect pests that act as vectors of plant diseases. Another class of green chemistry substitute chemical is the plant protection products. These are extracts and oils from plants with well-established antibacterial qualities. For example, neem oil which is extracted from the neem tree has been for a long time used as pesticide. It possesses antifungal, antibacterial and insectcidal effects and is efficient against wide range of plant pathogens and pests. Likewise, Garlic and Tea Tree are termed as natural antifungal and bactericidal properties for managing different plant diseases. Diatomaceous earth and copper derivatives are also used as organic eradication products in case you prefer an environmental friendly solution. Diatomaceous earth is used also as an abrasive and this costly abrasive damages the exoskeletons of pests., Copper based compounds are used for the control of fungal diseases such the downy mildew blight, with proper use because of toxicity issues. These environmentally friendly chemicals are useful components in any IPM programs due to their disease-controlling properties with low impact to the environment. This is because when incorporated into farming practices, they will help the growers to overcome the use of synthetic chemicals, support conservation of biological diversity as well as encourage sustainable agricultural practices.

Integrated Disease Management (IDM) systems

Integrated Disease Management (IDM) systems can be described as prevention and control systems for plant diseases that allow for the use of a range of measures to mitigate disease, decreased reliance on chemical pesticides. IDM stresses on biologically and environmentally

sustainable practices and includes cultural control, biological control, chemical control and physical control methods for disease management in plants. Here, the goal set is to control diseases for the long term and enable better, healthier vegetation with a minimal negative impact on the environment. Disease prevention is one of the service delivery models that come under the conceptual framework of IDM. This entails using practices like intercropping, spacing, and food hygiene that have an impact of disrupting the buildup and the course of the diseases. For instance, when one plants different crops in succession from different plant families it can help manage soil borne disease that selectively attack certain crops. These are other measures that can help to prevent diseases; correct methods of watering and the use of disease resistant plant varieties. The other component of IDM is biological control. This involves using predators, diseases or microbial antagonists to control destructive plant diseases. Trichoderma and Bacillus species as some of the most beneficial microorganisms can either supress the function and presence of pathological microbes by outcompeting them or by directly reducing their activities. Biocontrol agents are also usually employed with other management practices in order to give a broader strategy to disease management. Chemical control is still a part of IDM, however it is limited an only used as a last resort. In their natural form biopesticides or plant-based protectants are used every time rather than synthetic chemicals where and when needed. These treatments are not much hazardous to other living things and therefore considered to have low impact on the environment. Another important consideration for IDM is early warning system in monitoring. Another prevention measure is field scouting, that ensures that infection early symptoms are detected together with disease forecasting techniques. Through such a coordinated approach IDM systems assist in the practice of sustainable agriculture, minimization of the use of hazardous chemicals in production, and development of crop resistance to novel plant diseases. This paper reveals that IDM can improve crop yields, preserve natural resources and increase food production for all inhabitants."

Conclusion

Integrated Disease Management (IDM) offers an effective and environmentally friendly disease control regime for disease management in plants and reduced hazards from chemical control

methods. Using biological control, cultural practices, chemical alternative and resistant plant varieties, IDM presents an all-round natural approach to managing plant diseases in a sustainable manner and increasing crop resistance. The major strength of IDM is the amalgamation of different strategies in combating the plant diseases through improving the defense system against these diseases. Rotation, correct placement and sanitization decreases the population and interrupts the disease progression and sources while developing resistant varieties offers a nice longterm protection to the pathogen. Organisms that are friendly to agriculture and can be used against diseases are biological control agents and they do not affect other organisms negatively. Chemical interferences require the use of environmentally friendly products such as biopesticides or plant-protecting agents. Moreover, early detection and monitoring enable farmers to control the diseases before getting widespread, so they prevent or reduce crop damages or loses effectively. Since IDM is customarily applicable across a wide range of agroecological conditions and because practices can be modified according to specific conditions, IDM is an indispensible tool for managing plant diseases on a variety of environments. IDM becomes the viable solution as global problems like climate change, increasing significance of pesticide resistance and the need for sustainable agriculture grow. This innovation not only enables farmers to apply disease control than disease eradication but also sustains ecological balance and supports the biological and sustainable well-being of the agriculture. If IDM practices are maintained and improved, agriculture will start evolving to more sustainable, productive and resource conserving systems that will sustain food production into the future.

References

Agrios, G. N. (2005). Plant pathology (5th ed.). Elsevier Academic Press.

Cook, R. J., & Baker, K. F. (1983). The nature and practice of biological control of plant pathogens. American Phytopathological Society Press.

FAO. (2020). Integrated pest management: A guide for extension workers. Food and Agriculture Organization of the United Nations.

Labbé, C., & Lareau, M. (2016). Integrated disease management in the context of agroecological farming systems. Canadian Journal of Plant Pathology, 38(2), 144-153.

Meena, K. K., & Vidhyasekaran, P. (2017). Biological control of plant diseases: Theory and practice. Springer.

Munaut, F., & Bérard, A. (2018). Use of biopesticides in integrated disease management. Plant Disease Management in Organic Farming, 243-258.

Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144(1), 31-43.

Pimentel, D., & Burgess, M. (2018). Integrated pest management and sustainable agriculture. Sustainable Agriculture Reviews, 30, 63-93.

Zhang, R., & Wei, Z. (2020). The role of microbial biocontrol in integrated pest management. Microbial Pathogens and Strategies for Disease Management, 85-98.

Wolfe, M. S. (2019). Environmental impacts of agricultural intensification. Springer.